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ABSTRACT

A spatial marchin, analysis is given for economical computation of three-
dimens{onal viscous subsonic flows in rotating geometries. The governing
equations are based on a small scalar potential approximatisn for the
vector-decomposed secondarv flow velocity. No approximation is needed for the
streamwise pressure gradient term and this allows strong viscous secondary
flows, coordinate curvature and system rotation effects to influence these
pressure gradients. This approach 1is applied to three-dimensional laminar and
turbulent flows in rotating 90 degree bends and in rotating straight pipes and
ducts. The predicted structure of these flows is consistent with experimental
observations and measurements. Computer solutions obtained using 500,000 grid
points require only about 15 minutes of CRAY-!S run time. This approach appears
promising for further development and application to centrifugal impeller and

other turbomachinery flows,

INTRODUCTION

The influence of svstem rotation on turbulent internal flows is known to
have a major effect on turbomachinery performance, vet the phenomenon is poorlyv
understood. Although used fairly extensivelv, centrifugal machines have in the
past bheen designed largely on an empirical basis. 1In support of the empirical
apnroach, the acquisition of experimental data from actual machines has heen
anite extensive. However, few fundamental experiments desiyned to isolate
various rotation effects have been performed and conseaquentlv the understanding
of rthe fundamental filuid wmechanics of centrifugal devices is still rather
sparse.  The objective of the present investigation is to develop an economical
method for computing three-dimensional viscous flows with system rotation, whose
nse will enhance the understanding and allow prediction of important physical
effocts of rotating flow in centrifugal turbomachines.

The extrene complexity of most turbulent rotating flows presents an ohstacle
for the utilization of computational methods. Such flows are three-dimensional
and characterized bv Larpe secondary vorticitv and velocitv penerated by turnines
and Corfolis effects, turbulent shear layers, tip clearance offects and other

mylsiple lTenpth seale flow structures. Solution of the three—-dimensional
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averaged Navier-Stokes equations avoids making physical approximations other
than those associated with turbulence modeling. However, this approach is very
costly, even with modern supercomputers, because the flow structures of
practical interest are very complicated and accurate resolution of these flow
structures is expected to require very large mesh densities. To avoid this high
cost of solution, physical/mathematical approximations have been developed which
reduce the steady subsonic Navier-Stokes equation to a non-elliptic form which
is well-posed for solution as a spatial forward-marching initial/boundary-value
problem. The advantage of such an approach is that forward-marching solution
algorithms can be devised which are much less costly in terms of computer
resources (run time and storage) than algorithms for the elliptic Navier-Stokes
equations. The trade-offs are that (a) additional error due to the physical/
mathematical approximations are introduced, and (b) the range of flow problems
which can realistically be addressed is restricted relative to the Navier-Stokes
equations because of factors such as flow separation, stagnation points and
transonic effects. Nevertheless, this approach seems well suited for a number
of rotating internal ducted flows at or near design conditions, and can provide
very high resolution of three-dimensional viscous flow structures at relatively
low cost. In addition, the spatial marching approach can provide a large number
of detailed flow calculations at moderate cost, for use in design optimization
studies.

Two basic types of physical/mathematical approximations have been suggested
to reduce the Navier-Stokes equations to a non-elliptic form well-posed for
forward—-marching solution. Apnroximations in both viscous and inviscid terms in
the Navier-Stokes equations are necessary to obtain non-elliptic (well-posed)
approximating equations. First. a coordinate system for flow geometry being
considered must be constructed such that streamwise (marching) coordinates can
be identified. The viscous approximation entails neglecting terms representing
streamwise diffusion. In addition, two types of inviscid approximations have

been suggested: (a) an assumed form for the streamwise pressure gradient term,

and (h) a small scalar potential approximation for the secondary flow. FEither
of these approximations produces non-elliptic governing equations.

The inviscid approximation which assumes a given form for the streamwise
pressure gradient term has obvious roots in two-dimensional bhoundary laver
theorv, and has bheen used extensively. Variants of this approach have been

used, for example, by Patankar and Spalding [Ref. 1], Carreto, Curr and Spalding

[
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;Sésg : [Ref. 2], Briley [Ref. 3], Ghia and Sokhey [Ref. 4], Kreskovsky, Briley and
V:k:a McDonald [Ref. 5] and Levv, Briley and McDonald [Ref. 6] to compute flow without
N system rotation and by Howard, Patankar and Bordynuik [Ref. 7] and Majumdar,

A Pratap and Spalding [Ref. 8] to compute flows with system rotation. Although
'i;;% the approximation of streamwise pressure gradients can provide reasonable

'ifﬁ: accuracyv for manv problems, this tvpe of approximation does not allow the

::J- streamwise momentum equation to be influenced by experimentally observed

distortions of the static pressure field which are induced by large secondary
flows associated with duct curvature and system rotation.

A second type of inviscid approximation (termed the small-scalar potential

approximation) has been investigated recently by Briley and McDonald (Ref. 9).

.5.: This approximation does not employ an approximation for streamwise pressure
';SE; gradient terms and instead approximates convective terms in the secondary-flow
7E§§ momentum equations by neglecting the scalar—potential component of a vector-

N
?;:; decomposed secondary-flow velocity field which corrects the transverse velocity
'“Ql, vector from an a priori potential flow solution. This approximation allows

el strong viscous secondary flows and curvature terms to influence streamwise
. :: pressure gradients in the primary flow momentum equation. It should be noted
- N that the small scalar approximation is especially advantageous for rotating
flows because such flows are generally rotational even when inviscid, and this
precludes any convenient method of introducing an inviscid pressure
approximation, such as imposing streamwise pressure gradients from a potential
flow.

In the present report, a derivation of the approximating small scalar
potential equations 1is given for a rotating coordinate system. Computed results

for three-dimensional viscous flow in simple confined rotating geometries are

given. Some results for laminar flow in a rotating 90 degree bend and for
turbulent flow in rotating straight ducts, previously reported by Lin, Briley
and Mchonald (Ref. 10) are included as part of the present final report. 1In

addition, computed results for turbulent flow in a rotating 90 degree bend are

given.

ANAT.YSTS

|
The small scalar-potential approximation is considered in detail for ‘

non-rotating coordinate svstems in Ref, 9, The present analysis considers the

e
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derivation of the applicable approximating equations for a rotating coordinate
system. The governing equations are derived through approximations made
relative to a curvilinear orthogonal coordinate system fitted to and aligned

with the flow geometry under consideration.

Equations governing the primary flow velocity, Up, and 1 secondary flow
vorticity, 5, normal to the transverse coordinate surtaces are dertved utitizing
approximations which permit solution of the equations as an iniridl-value
problem. Terms representing diffusion normal to the trancvers coordinate
planes are neglected. The contribution of scalar-potentiil components of

secondary velocities in convective terms of the cross tlow momentum equations is
assumed small and is neglected. No approximation is made for pressure gradient
terms, and the static pressure field is determined as part of the forward-
marching solution process. Secondary-flow velocities are determined from scalar
and vector potential calculations in transverse coordinate surfaces once the

primary velocity and secondary vorticity are known.

Compressible Navier-Stokes Equations in Rotating Coordinate System

The contianuity and momentum equations for steady compressible flow relative

to rotating coordinate system in vector forms are given by

— (D

ol = p{[TW0)+ o'V - Fr2axi+ & x(@xn) =0 (D

where p is density and U is velocity relative to rotating coordinate system. p
|
denotes pressure and F denotes force due to viscous stress. w is the system

rotation vector, T is the position vector. The equation of state for a perfect

gas is given hyv

P = pRT (%)

where R is gas constant and T {s temperature. In the present studv, the flows

are low Mach number subsonic flows with neglible heat transter, so the
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i}} stagnation energy can be assumed to be a known constant, E;, and the energy

Cans

;u{ equation can be omitted from consideration. For constant stagnation energy, the
‘ixi gas law can be written as

Sl

o

Siey -1 J.L)

. - =1 —u-

o= 5 plEo-u3 (4)

=

)

~ -

. where vy is the specific heat ratio.

-h ‘y‘,

}:J In the following, coordinates x,y,z, velocity components u,v,w and the unit
o “ A A

‘ g: vectors i;,i,,i3, In the x-, y- and z- directions, respectively, refer to a
“

¥ u. . 3 . .

- general rotating orthogonal coordinate system. The metric coefficients are

denoted h,, ho and hj.

BN \¢ L <

o

n.;::.

I Secondary Velocity Decomposition

W,

Lo

— The analvsis is based on a decomposition of the secondary velocity vector

;f;' into vector components derived from scalar and vector surface potentials,
{f: denoted ¢ and ¢, respectively. The velocity vector is written as

~':‘:'

_ . _ S
U= "Tu+0, (5)

where u is the primary velocity and ﬁs denotes the secondary velocity. The

secondary velocitv is written as
"
0 = v +i,w (6)

= and is decomposed as follows:

P »
e O, = Ve + —’%Vxll\y 7

s Here, Vo is the transverse surface gradient operator, given for orthogonal

Y coordinates bv

i » 1
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The transverse velocity components can be expressed as

V—V¢ w:w¢+w (9)

w ?

using (7), (8), (9), the decomposed transverse velocity components are given in

orthogonal coordinates by

dh]¢ (10a)

- |
vV = vy + v, = + -4
¢ 14 h, dy hhy p a2
| 9¢ 1 Shy
= + = —_— " 1 1 17
"TMT W T R, 9 T mh, e oy (101)

The decomposition of secondary velocity v, w into v¢, VW’ w¢, ww, introduces
two additional dependent variables and thus requires two additional equations to
close the set of governing equations. The additional equations are obtained

from vector identities associated with the decomposition, as discussed later.

Physical Approximations

Inviscid Approximations for Convective Terms

For convenience in defining the present approximations, a parameter, 8, (to
be assigned a value of 0 or 1) is introduced in the expressions for transverse

velocizv components as follows,

Vo= gt vy, '\7==Bv¢+ vy (1

w o= wgt oWy, w = Bwg + wy (12)

The parameter, 8, will bhe used to define approximations in the convective terms.

"eing (11) and (12), the components of the convective term C(I1) Z(11«V)II can
b

be exprassed in orthngonal coordinates as follows:
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C, = UVu + ul vk, + wKy) = viK, - wiK,) (13)
€, = UIV - uluK, = TK,) - wlWK,, - TKy) (14)
Cy = UV&F - uluKy - WKy) + VWK, - T K,,) (15)

where the quantities Kij are the geodesic curvatures of the coordinates,

defined by

K~- = (h h) - (1())

and in which x;,x,,x3 are interchangeable with x,y,z, respectivelv. The small
scalar-potential approximation is made by setting B8=0 in (11) and {12) and

hence, in C,,C3; no approximation is made in C;. If 8=1, then v,w=v ,w, and the

above expressions for (,,C3 revert to C,,Cy, their exact forms,

Viscous Approximation Neglecting Streamwise Diffusion

The viscous force, F, in (2) can be written as
PP = —UX(uQ) + \+2.)V(V-0) (17)

whers QIUl is vorticity and p and A are viscosity coefficients. For moderate
subsonic Mach number V » U is small, and the last term in (17) is neglected.
All viscous terms which contain either a derivative with respect to x or those
containing vy or wy are of smaller order than remaining terms and are

neglacted, Neglecting these terms give the following approximations:

For the viscons force F'

e = (o BRG] mE e ()
d h2n d
+ E—Z—h:‘ az( )+ thhz o3, (;‘)] (18)

. ~ N h - " . - °. - . - .
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and for the transverse components of viscous force Fp', Fj3':

, ah ufd)
(hhy) pFp = - —3— (19a)

hh.) off = - —1707
hihe) pFs dy (19b)

where the streamwise vorticity is given by

d(h d
Q = (hzhs)_. [ ( 5“'*) - (hsz)] (20)

dy oz

System of Approximating Fquations

Introducing the inviscid approximation for convective terms and the viscous
approximation neglecting streamwise diffusion, and combining equations (2),

(13), (14), (15), (18), (19) and (20), the compressible Navier-Stokes equations

can be approximated as:

| d ' _- = - —- —
pMI = p {C' + (Phl) *dTp' - F| +2(va)| + [wX(er)]‘} =0 (21)

PM, = p {'62 + (th)-l _32:1 F2'+ Z(WXV)Z + [WX (QXF)]Z} =0 (22)

©
z
I

~ & ap ' —_p - - = - —_
L = P {c3+ (phy)’ 5= = Fy+atExd,  + [wx(er)]B} =0 (23)

The continuity equation and equation of state, i.e., Egs. (1) and (4) remain

unapproximated, and the decomposed secondary velocities ﬁ¢ and ﬁw satisfy

following relations

1-(UxTy) = 0 (24a)
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V-(py) = 0 (24h)
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The above seven equations provide a system of equations governing the five

velocity components u, Vg, Wes Vi, Wy, Pressure p and density o.

Approximate Fquations as a Well-Posed Initial Value Problem

It was shown in Ref. 9 that for nonrotating coordinates the foregoing

K
‘u;- approximations produce a system of equations which is well-posed. 1In rotating
1-"- -". .

o coordinates, the equations differ only in the appearance of centrifugal and
?:f: Coriolis terms. These terms do not affect the well-posedness of the equations,

and consequently, the system of equations (1), (4), (21), (22), (23), (24a)

SN and (24h) is well-posed for solution as an initial/boundary value problem.
BN
e
o

i Approximate Fquations Written in New Dependent Variables

Although the dependent variables and the approximate equations given above
are convenient for the analysis, they are not convenient for numerical solution.
The equations are reformulated for numerical solution in terms of the axial

velocity, u, pressure, p, streamwise vorticitv, Q;, scalar and vector surface

potentials, 4 and y, together with density, p. The equations for Q; and p are

S derived by taking the divergence andkcurl oi the transverse vector momentumn
S:S: equations (22) and (23). Let Mg = i,M, + i3M3 denote the vector transverse

\ #;: momentum equation, the equations governing streamwise vorticitv, Q;, and

. t. pressure, p, are given hy

-

e T-(UXpM,) = 0 (29)
5

KA

o V(M) = 0 (76)
o Incorporating the definition of ﬁ¢ and ﬁw, the continuity equation (1)

hecones

Ll Vpliu + U,¢) = 0 n

—g-




and the definition of §; becomes
_ ) -1
€ = fl VX (p™ UXiy) (28)
The final system of equations consists of equations (25), (26), (27) and (28)
above, the x momentum equation (21), the state equation (4) for the dependent

variabhles u, p, 9}, ¢, ¥ and p. These equations are given for a general

rotating orthogonal coordinate system in Appendix A.

Turbulence Model

In turbulent flow calculations, an isotropic eddy-viscosity formulation is

used for Reynolds stresses as follows:

== _ _ 9y
PY; Y K 3, (29)

and the effective turbulent viscosity, upr, is added to the laminar viscosity,
y. The turbulent viscosity is related to mean flow variables by means of a

mixing length distribution

(2e:€) (30)

where e is the mean flow rate of strain tensor

e = & [(v+ @] .

The mixing length, 2,, is determined from the empirical relationship of
Mchonald and Camarata [Ref. 11] for equilibrium turbulent boundary layvers which

can he written

~

x
L,(Y) = 0.0985,tonh {o.oga,,] »))

(32)

where 84 is the local boundary layer thickness, x is the von Karman constant,

_10_
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taken as 0,43, v is distance from the wall, and D ts a sublaver damping factor

defined by

D = p2(y* - YV /0 (33)

e

-
-
i

where P is the normal probability function, y* = ;(T/p)l/z/(u/p), T is local
shear stress, v© = 23, and o0; = 8. ; is taken as the distance to the nearest
wall.

It is recognized that this treatment represents a major simplification of
the representation of the turbulent transport in a rotating system. However, it
is also recognized that turbulent transport effects are most significant near
the snlid wall, and in this area a length scale varying with distance from the
wall provides a reasonable first-order estimate. Further from the wall, this
length scale variation becomes inaccurate, but here the flow is essentially
inviscid and the errors in the length scale specification appear less
ilmportant. At present, in addition to turbulence model considerations, there
are major issues in adequately representing the convective processes and in
obtaining accurate numerical solutions of the governing system. As a

consequence, the preseut simple turbulence model was considered a reasonable

starting point for the present turbulent work.

Numerical Method

The governing equations are replaced by an implicit finite-difference
approximation. Three-point central-difference formulas are used for all
transverse spatial derivatives. An analytical coordinate transformation devised
by Roberts [Ref. 22] is employed for each transverse coordinate direction, as a
means of introducing a nonuniform grid to concentrate grid points in the wall
shear-layer regions. Two-point backward difference approximations are used for
streamwise derivatives, although this 1is not essential,

In all the solutions reported here, no-slip or symmetry boundary conditions
are prescribed, as appropriate. No boundary condition is required for density,
since it is computed algebraically from the state equation. The no-slip
conditfon, v = w = 0, must be expressed in terms of ¢, ¢ and Q;. The normal

velocity component is specified by prescribing ¢ = 0 and the Neumann condition

._]1_
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component of the no-slip condition is written as

i (T, + V¢ +p7'UXTy) = 0 (34)

where it denotes the unit tangent vector, and the finite-difference forms of
(28) and (34) are combined to provide a boundary condition relating Q; at wall
to & and Y. A Neumann bhoundary condition for pressure, p, at a no-slip wall is

obtained from the normal momentum equation as

?n.[Vp—pF'+ P;x(&x?)] = 0 (35)

where the convective terms and Coriolis force term vanish because U = 0. It is
beneficial to introduce a further change of variables expressing the pressure,

p, as
p = P(x,y,2) + p.(x) + Ap(x,y,2) (36)

where P(x,y,z) is the potential pressure. Equation (26) now governs Ap, but
does not contain py, which is in effect the arbitrary constant of the Neumann
problem for Ap at each x—location. As a consequence, equation (26) can be
solved for Ap before p; is known, and pp can then be adjusted during

solution of the x-momentum equation to ensure that the inteé}al mass—flux

relation
f(pu)dA = Q = constant

is satisfied, where A denotes cross section area.

A summary of the procedure used to advance the solution a single streamwise
step to the (n+l)-level x"*1 from known quantities at x" follows. Tllnless
specifically mentioned to the contrary, the transverse velocities vy, W,
vy, wy and the density p are evaluated explicitly at the n-level. 1In
addition, the convective operator is evaluated as pMIN+.V. Values of ;, hy,
hy, and hj are given and thus known at both xM and x0*l,

+ +1
1. Fquations (A.1) and (A.2) form a linear coupled system for an land wn

which is solved as a 2x2 coupled system., For this purpose artificial time

_.l2._




\;.;i,%{
AR

A
bk

X0

T ST N T W T W T W N Y S w

derivatives are added to each equation, and an iterative block-implicit scheme
[Ref. 12] is used. In prescribing no-slip boundary conditions, the tangential
component (34) contains a contribution from ¢; this contribution is evaluated
using ¢, Terms in the vorticity equation (A.!) containing u, v, w, vy and

n n n
ww are evaluated using u , v , w, vw and wy; x~derivatives of vw and ww are
evaluated using n- and (n-1)-level quantities, w;, w,, w3 are known and

evaluated at n+l level.
(2) The pressure equation (A.3) 1is solved for Apn"*l using an iterative
+ +
scalar ADT scheme. 1In this equation all appearances of v% 1 and w; 1 are
evaluated using w“+1, and u, v, w, p, Vi and Wy are evaluated using
n-level quantities. r;, rp, r3 and w;, wy;, w3 are known and evaluated at n+l

level.

n+ .
(3a) Using an assumed value of py 1 to bhegin a secant iteration and values

of Apn and Apn+1 now available, the x-momentum equation (A.4) is solved to
determine u"*l, using a scalar ADI scheme.

(3b) The density pn*l i{s evaluated from the state equation (A.5) using

—n+ + +
T 1, p; ! and AB L , which are now available.

(3¢c) For internal flows the integral mass-flux relation (37) is evaluated

using u*l and pn+l,

(3d) Assuming that the initial guess for p$+1 was not exact, the integral
mass—-flux relation will not be satisfied, and steps (3a-c) are repeated
iteratively using the standard secant method [Ref. 13] to find the value of
p3+1 that leads to u*l and pn*l satisfying the integral mass-flux

relation (37).

(4) Finallv, the continuity equation (A.6) is solved for ¢“+1 using an
{terative scalar ADI scheme and currently available values of uf*l and pn*l,

n+l n+l n+l
w

n+] n+l
The velocity components v , s V and w are then evaluated from ¢

and wntl,

COMPUTED RESULTS FOR ROTATING FLOWS

Nne of the motivations of the present studv is the eventual computation of
flow in centrifugal turbomachinery components such as centrifugal {mpellers.

The treatment of radial impeller geometries requires that the present analysis
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be generalized for use with nonorthogonal coordinate systems. This generali-

zation and the implementation in impeller geometries is part of an ongoing
investigation being performed under a related contract (DAAG29-85-C-0030). 1In
the present study, the analysis 1s applied to rotating flows in simple
geometries using orthogonal coordinates. The flows considered include laminar
and turbulent flow in a rotating 90 degree bend with square cross section and

turbulent flows in rotating straight pipes and ducts.

Laminar Flow in a Rotating 90 Degree Bend

The geometry and flow configuration considered are shown in Fig. 1. The
flow enters the duct axially and leaves radiallv. The Reynolds number
Re = U,D/v is 790, where U, is the mean flow velocity, D is the duct width,
and v is kinematic viscosity. The duct has a square cross section, and the Mach
number was taken as 0.001, which means that the flow considered is essentially
incompressible. Both rotating and nonrotating flows are considered for this
geometry. The initial boundary layer thickness §;/D was taken to be elther
N.4 or 0.1, 1In Ref. 9, predictions for nonrotating flow with &8;/D = 0.4 were
found to be in very good agreement with experimental measurements. For the
rotating flow, two cases are reported here, one with Rossbhy number Ro equal to
5.0 and the other with Ro equal to 1.0. The Rossbhy number is defined as
Ro = i1,/20D, where Q is the rotation speed.

The small-scalar potential approximation is examined in Fig. 2 for both
nonrotating flows and rotating flows with Ro = l. The initial boundary layer
thickness was 0.4. The maximum absolute value of each (¢ or V) component of
transverse velocity is shown against streamwise distance. The results in Fig. 2
show that the ¢-component of the transverse velocity 1s significantly less than
the -component, except very near the entrance section of the bend. This
comparison 1is taken as an indication that the assumption of small ﬁ¢ is
reasonable for these flows. The small-scalar potential approximation has proved
adeauate in all the test cases considered.

Computed results for both rotating and nonrotating flow cases with
5¢/N = 0.4 are compared in Figs. 3-5. Shown In these figures are the
transverse secondarv-flow velocity vectors, the streamwise primarv-flow velocitv
contours, and the static pressure contours for the flow at the 9 degree

location, at the end of the bend. 1In the nonrotating flow, the curved duct
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geometry generates a strong secondary flow as shown in Fig. 3, and this distorts
the primary flow velocity as shown in Fig. 4. The static pressure {s shown in
Fig. 5. The rotating flow cases are also shown for comparison in Figs. 3-5.
The Coriolis forces in the rotating flow exert an increasing influence on the
flow development as the system rotation rate increases. The rotation causes
additional secondary flow motion which tends to twist the counter-rotating
vortices present in the nonrotating case, and this further distortion increases
wi:h increasing system rotation rate, as shown in Fig. 3. The streamwise
velocity is shown in Fig. 4, and the observed distortion of the primarv-flow
velocity contours in the rotating flow case is consistent with the predicted
secondary flow. Finally, the static pressure in Fig. 5 reflects a complicated
interaction of the primary and secondary flows as influenced by duct curvature,
centrifugal, and Coriolis force effects.

Fig. 6 and Fig. 7 show the effects of initial boundary laver thickness on
the development of primary flow in both nonrotating and rotating 90 degree
hends., The thicker bhoundary laver causes a stronger secondary flow which in
turn generates stronger distortion in the primary flow as shown in Fig. 6 and
Fig. 7. Phvsically, the secondary flow is generated inviscidly hv the turning
of transverse vorticity but its growth is retarded by viscous stress near
walls. Viscous stresses exert a stronger retarding effect on thin boundary
laver cases than on thick boundary layer cases. Thus, the thicker houndary
laver flow generates stronger secondary flow and distortion in the primary
flow. The computed effect of initial boundary layer on the development of
primary and secondary flow is consistent with experimentally observed trends

[Ref. 14].

Turbulent Flow in a Rotating 90 Degree Bend

The geometrv and flow configuration are the same considered for laminar
flow (Fige 1). The flow parameters are Re = 50,000, Ro = 1.0 and inftial shear
laver thickness $y/D = 0.1. This calculation was started in the straipht
extension upstream of the bend at a distance of 1.5 D from the start of the
hord,  The development of this flow at streamwise stations corresponding to 0O
I A0 and 90 devrees of turning are shown In Figs, Ba~d. The development of
the primarv and secondarv flow is shewn in Figs., 8a-h., At the start of the hend

(tv degrees) there is little Coriolis effect because the primarv flow velocity i
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parallel to the axis of rotation. There is only a small amount of secondary
flow, and this is due to the effect of geometric curvature. As the bend angle
of turning increases (30, 60, 90 degrees) there 1is an increased effect of
Coriolis forces, combined with secondary flows generated by turning of the
duct. The Coriolis forces cause additional secondary flow which twists the
vortices induced by turning. The vortices migrate toward the forward wall in
the direction of rotation (the low pressure surface) and this behavior is
consistent with general experimental observations. A considerahbhle amount of
distortion of the primary flow is present, as is consistent with predicted
secondary flows. Because the Coriolis force depends on the local flow speed,
the overall flow structure is quite complicated. The secondary flow velocity is
verv large and of the same order of magnitude as the primary velocity in thin
shear layers along the inside and outside walls of the bend. These large
secondarv vortices are the result of the primary flow momentum deficit in these
shear layers subjected to Coriolis-—induced pressure gradients.

The pressure coefficient for this flow is shown in Fig. 8c. At the start
of the hend, the transverse pressure gradients are relatively mild. The
gradient is essentiallv in the direction from ocutside to inside of the bend and
is associated with geometric curvature effects. As the bend turning angle
increases, the transverse pressure gradients gain considerable strength and are
directed essentially in the direction of rotation with low pressure on the
leading surface. Finallv, contours of the streamwise pressure gradient
(an/ax) are shown in Fig. 8d. These gradients are of interest hecause the
present analysis and governing equations were formulated to avoid approximations
for this term in the primary flow momentum equation. These streamwise pressure
gradients gain considerable strength and complexity with increasing bend turning
angle; the transverse variation in this term is of order unity. Tt would bhe
difficult to devise a pressure approximation for this term which would be

adequate for rotating flow structures of this complexity.

Turbulent Flow in a Rotating Pipe

The pgeometrv and flow configuration for this case are shown in Fig. 9. The
Revnolds number Re = 1, d/v is 6 X 104, based on pipe diameter, d, and mean
axial velocity, I'y. The Rossby number Ro = 1I,/2Qd 1s 1.0, where Q is the

rate of rotation. The initfal houndary laver thickness is 0.03 d, which was
-16-
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estimated from the entrance axial velocity profile measured by Kikuyama,
Murakami and Nishibori [Ref. 15] for these flow conditions. Kikuyama, Murakami
and Nishibori [Ref. 15] measured time-mean velocity and turbulent fluctuatinns
- in this flow. They found the system rotation of the pipe has a stahilizing
‘:i effect in the suppression of turbulence. Using the mixing-length theory, theyv
f?[ suggested the following formulas for mixing length distribution to account for

the suppression of the turbulence due to pipe rotation.

£/4, = | - BRi (38)

where £ and £, denote the values of the mixing length for rotating and

- nonrotating flow. 8 1is a constant, and Ry Is the Richardson number defined 'y

NN

. R = %%(m){(g—;‘)z* [‘%(%)]2} (39)

- Here, w is the swirl velocity and u is the streamwise velocity, r and z are ]

'
'

distances from the center and the wall of pipes, respectively. 1In the present
calculation, the mixing length distribution £, for nonrotating flow {is
computed bv using equations (32), (33), and the mixing length distribution for
turbulent pipe flow is calculated by using equations (38), (39). The

:ﬁ coefticient, B, is chosen to be 2. The turbulent viscosity is obtained from
W, equations (30), (31).

Figures (l10a) and (10b) show a comparison of computed and measured
streamwise velocityv, u, and swirl velocity, w, components at station x/d = 28.8.
The streamwise velocity, u, is normalized by free stream velocity, Ve, and the
swirl velocity, w, is normalized by pipe radius, ro, and rotation rate, Q. The
distance from the pipe wall, r,-r, is normalized by the momentum thickness,

b4

o

T Ax. The computed and measured velocity distributions are In good agreement.

Turbulent Flow in a Rotating Duct

The veometrv and flow configuration for this test case are shown 1In
Fis. 11, The rectangnlar cross section has a helght to width ratio H/D = 0,368,
The Revnolds numher, Re, {s Ah 500 based on passave hvdraulic diameter and mean

veloe{tv. The Rosshy number, Ro, {s 6  based on passaype width, N and mean

-17-




WU T Y g = T

velocitv. The initial boundary laver thickness used in the calculation 1is

0.05 N, The mixing length distribution from equation (32) was used for these
calculations. In Figs. (12a) and (12b), the computed streamwlse velocity in the
horizontal center plane and secondarv velocity in the vertical center plane are
compared at x/D = 5 with the measurements of Wagner and Velkoff [Ref. 16] and
the computed results of Howard, Patankar and Bordynuik [Ref. 7]. The present
results agree verv well with the measured streamwise velocity in Fig. (12a), and
the improved agreement relative to the Ref. 7 calculation probably reflects the
tiner vrid and resolution of the viscous sublayer region in the present results,
compared with the wall-function treatment of Ref. 7. The comparison for
<vcondarv velocitv in Fig. (12b) is less conclusive because of the difficulty of

measarimn small velocities near walls using hot wire anemometry.
CONCLUSIONS

A spatial marching analvsis is described for _omputation of three-
dimensional viscous flows with system rotation. The governing equations are
hased nn a small scalar potential approximation for the secondary flow, which
does not entall any approximation of the pressure gradient terms. The analysis
was assessed by application to laminar and turbulent rotating flows in simple
Aucts and hends. This approach seems well suited for a number of rotating
internal ducted flows at or near design conditions, and can provide very high
resolution in three dimensions at relatively low costs. Adequate resolution of
turbulent flows including viscous sublayer resolution appears to require at
least 500,000 grid points even in the simple 90 degree bend geometry. Solutions
ohtained by the present method using 500,000 grid points require onlv about 15
minutes of CRAY-1S CPU time. Future work will address implementation of the
analvsis in nonorthogonal coordinates and computation of centrifugal impeller

flows.
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APPENDIX A

L~

Governing FEquations in Rotating Orthogonal Coordinates

The governing equations for the reduced form of the Navier—-Stokes equations
hased on the small-scalar potential approximation is given below In a general N

rotating orthogonal coordinate system.

Vorticity Equation

Py 9 o8, + 9 hypvil, + J h, pwil,

h, Ox dy F '
dhyw 9 /pu dh,v 9 spuy 0 :
0 ) BT (e 2 -
dx dy \h, dx dz \h / Oy '3
dpv dv dpv OV
2 it s o
T3 (thu Kl2) * dy d1 dz dy
(A.1) )
dpw ow dow Ow
Yoy % T e 9y -
d h, 0 d h, 0
3 2
il —— 5T h
{Oy h h, dy * Io}. hlhBOZ] (prpg) ‘Sl‘
d d ;
- ZE[pha(ww—wzu)]*' 2-0—2—[ph2(w3u-wlw)] )
Here, 0, 1is streamwise vorticity, and w;, w,, w3 are components of the system 3

rotatinn—-rate vector. Kii is given in equation (16). \

Vortic{ty Definition
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Pressure Equation

—%—J(P'I'Ap) + gd; hhy pC,

9 {ph|h [ (w2r3 w3r2)—w|(wlr2-w2r|)]}

= wylwyry - “’3’2)]} =0

where €, and C3 are given in equations (17), (18), and t;, r,, r3 are

components of the position vector.

x—-Momentum

U du L du . du +ulvK,, + WK )
— —t——t——+y w
h, dx nh, dy hy 3z 13

vEK, - wiK, + (pn))7 AP+ + Ap)/ dx

(w, r

wolw Ty

- + - - -
Wyl ) ¥ wylwyr = wiry) = 2 (w,wW — wyv)

4] hTh d <u> )
_.l - . -
(pd) [dy hy (/.L+#T)ay y +h|h3('u+/“r)K;2

o g e o) ()
—a—;h—'+gz ’u,}_,,_r)a +hh(/_L+/.LT)K13-O—Z-—h-I—J

3 .

\ T AL L S P A SN S LR O L) A OO
st ot -." ’x‘x'-“-'x S A A AR AT A A W8 e W .-;V\-"- P -r \ .}“.\- o
aal e 4 a o £ NP ; k BN,V 3 Ban Bal




(A.S)
(A.6)

— ~N
o d_d
w N >
~ o~
Q. |
B | =
- o |o
1~
m
>~ ¥l o~
- c
n =
a Q
A | >
+ o
E +
p LY
=
+ Q
(2]
a r
o
o
c
o o X
it o
-l
a >
=] -~
[=a/ -l
m o)
c
Q Lol
=) -
« c
o O
172 <
AP FANS AR PL PP PRI PLPRN RSt JE L ST by X e A AR PR AR PP
NN, NN SRR XN NN PR Y =R R R « NSNS ASE SRR
1%2%s SN N 5 gty - LA - LN SN, T RN AR v r e SR LIV R
AR, Sy TOILDRr  SAREGS RO CONINYYY T BRIXOON USNNUNY ALK RGN



- - g s oma . ey - o ma- P Al A
A 2 - o L o Al Ak Sak Al Aol ol s Aoa b e ang Sea S8 Bhe Ay Las 4.

SREXA
s

- ]

h.
A LD PP T

90° | 2

T

e,

' s a’a «
Cn B Yty o g

P A

+

-} x) 7

:. I..l.

u

R N

- e
2

R
ot
-

-»
Chat DY
LI

“ ..ls}‘.J : ’

a’s

Figure 1- Rotating Flow in 90° Bend.
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Figure 11 - Geometry for Rotating Flow in a Straight Duct.
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